EconPapers    
Economics at your fingertips  
 

Microbial electrolysis contribution to anaerobic digestion of waste activated sludge, leading to accelerated methane production

Wenzong Liu, Weiwei Cai, Zechong Guo, Ling Wang, Chunxue Yang, Cristiano Varrone and Aijie Wang

Renewable Energy, 2016, vol. 91, issue C, 334-339

Abstract: Methane production rate (MPR) in waste activated sludge (WAS) digestion processes is typically limited by the initial steps of complex organic matter degradation, leading to a limited MPR due to sludge fermentation speed of solid particles. In this study, a novel microbial electrolysis AD reactor (ME-AD) was used to accelerate methane production for energy recovery from WAS. Carbon bioconversion was accelerated by ME producing H2 at the cathode. MPR was enhanced to 91.8 gCH4/m3 reactor/d in the microbial electrolysis ME-AD reactor, thus improving the rate by 3 times compared to control conditions (30.6 gCH4/m3 reactor/d in AD). The methane production yield reached 116.2 mg/g VSS in the ME-AD reactor. According to balance calculation on electron transfer and methane yield, the increased methane production was mostly dependent on electron contribution through the ME system. Thus, the use of the novel ME-AD reactor allowed to significantly enhance carbon degradation and methane production from WAS.

Keywords: Microbial electrolysis AD reactor; Waste activated sludge; Energy recovery; Bio-electron; Methanogenesis (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116300829
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:91:y:2016:i:c:p:334-339

DOI: 10.1016/j.renene.2016.01.082

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:91:y:2016:i:c:p:334-339