EconPapers    
Economics at your fingertips  
 

Heterogeneous mixture distributions for modeling wind speed, application to the UAE

Ju-Young Shin, Taha B.M.J. Ouarda and Taesam Lee

Renewable Energy, 2016, vol. 91, issue C, 40-52

Abstract: Heterogeneous mixture distributions (HTM) have not been employed for wind speed modeling of the Arabian Peninsula. In order to improve our understanding of wind energy potential in the Arabian Peninsula, HTM should be tested for the frequency analysis of wind speed. The aim of the current study is to assess the suitability of HTMs and identify the most appropriate probability distribution to model wind speed data in the UAE. Hourly mean wind speed data were used in the current study. Ten homogeneous and heterogeneous mixture distributions were used and constructed by mixing the four following probability distributions: Gamma, Weibull, Extreme value type-one, and Normal distributions. The Weibull and Kappa distributions were also employed as representatives of the conventional non-mixture distributions. Maximum Likelihood, Expectation Maximization algorithm, and Least Squares methods were employed to fit the mixture distributions. Results indicate that mixture distributions give the best fit to wind speed data for all stations. Wind speed data of five stations show strong mixture distributional characteristics. Applications of HTMs show a significant improvement in explaining the whole wind speed regime. The Weibull-Extreme value type-one mixture distribution is considered the most appropriate distribution for wind speed data in the UAE.

Keywords: Mixture distribution; Heterogeneous mixture distribution; Wind speed modeling; Wind speed probability distribution (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116300416
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:91:y:2016:i:c:p:40-52

DOI: 10.1016/j.renene.2016.01.041

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:91:y:2016:i:c:p:40-52