EconPapers    
Economics at your fingertips  
 

Time series prediction using artificial wavelet neural network and multi-resolution analysis: Application to wind speed data

Boubacar Doucoure, Kodjo Agbossou and Alben Cardenas

Renewable Energy, 2016, vol. 92, issue C, 202-211

Abstract: The aim of this work is to develop a prediction method for renewable energy sources in order to achieve an intelligent management of a microgrid system and to promote the utilization of renewable energy in grid connected and isolated power systems. The proposed method is based on the multi-resolution analysis of the time-series by means of Wavelet decomposition and artificial neural networks. The analysis of predictability of each component of the input data using the Hurst coefficient is also proposed. In this context, using the information of predictability, it is possible to eliminate some components, having low predictability potential, without a negative effect on the accuracy of the prediction and reducing the computational complexity of the algorithm. In the evaluated case, it was possible to reduce the resources needed to implement the algorithm of about 29% by eliminating the two (of seven) components with lower Hurst coefficient. This complexity reduction has not impacted the performance of the prediction algorithm.

Keywords: Wind speed forecasting; Adaptive wavelet neural network; Multi-resolution analysis (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (39)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116301045
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:92:y:2016:i:c:p:202-211

DOI: 10.1016/j.renene.2016.02.003

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:92:y:2016:i:c:p:202-211