Mathematical modeling of premixed counterflow combustion of organic dust cloud
Mehdi Bidabadi,
Moslem Akbari Vakilabadi,
Alireza Khoeini Poorfar,
Eliseu Monteiro,
Abel Rouboa and
Alireza Rahbari
Renewable Energy, 2016, vol. 92, issue C, 376-384
Abstract:
In the present study, a mathematical approach is utilized so as to modeling the flame structure of organic dust particle and air through a two-phase mixture consisting in a counterflow configuration where heat loss is taken into account. Lycopodium is considered as the organic fuel in our research. In order to simulate combustion of organic dust particles, a three-zone flame structure has been considered; preheat-vaporization zone, reaction and post flame zones. The variations of the gaseous phase mass fraction and fuel particle mass fraction as a function of the distance from the stagnation plate are obtained. Subsequently, flame temperature and flame velocity in terms of strain rate are studied. Finally, the effect of heat loss on the non-dimensionalized temperature at different heat loss coefficients is investigated.
Keywords: Counterflow combustion; Organic dust cloud; Mathematical modeling; Flame structure; Asymptotic solution; Heat loss (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116301033
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:92:y:2016:i:c:p:376-384
DOI: 10.1016/j.renene.2016.02.002
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().