EconPapers    
Economics at your fingertips  
 

Assessment on oxygen enriched air co-combustion performance of biomass/bituminous coal

Xiang Liu, Meiqian Chen and Yuanhang Wei

Renewable Energy, 2016, vol. 92, issue C, 428-436

Abstract: The oxygen enriched air combustion performance and ash fusion characteristics of two typical agricultural and wood samples (corncob and hardwood) and bituminous coal were assessed using a thermal analysis technique. The effects of oxygen contents, sample kinds and blending ratios on the combustion performance were revealed, and the effects of sample properties and blending ratios on the ash fusion of samples were also evaluated. Biomasses showed better ignition performance and comprehensive combustion performance than bituminous coal. The ignition and comprehensive performance indices of corncob/coal blends were higher than those of hardwood/coal blends. Apparently, the combustion performances of biomass/coal blends improved with increasing the oxygen contents and blending ratios of biomass. Certain synergistic interactions were detected between Chinese bituminous coal and corncob or hardwood during the co-combustion at 100% and 80% oxygen contents. The ash fusion reactions of corncob, hardwood and bituminous coal mainly occurred in the ranges of 1036–1079 °C, 1046–1289 °C, and 1260–1290 °C, respectively, while the ash fusion reaction of corncob/coal blends occurred in the range of 1096–1289 °C.

Keywords: Co-combustion; Ash fusion; Biomass; Bituminous coal; Oxygen content; Combustion indices (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116301367
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:92:y:2016:i:c:p:428-436

DOI: 10.1016/j.renene.2016.02.035

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:92:y:2016:i:c:p:428-436