Domestic wastewater treatment in parallel with methane production in a microbial electrolysis cell
R. Moreno,
M.I. San-Martín,
A. Escapa and
A. Morán
Renewable Energy, 2016, vol. 93, issue C, 442-448
Abstract:
Microbial electrolysis cells (MECs) have great potential as a technology for wastewater treatment in parallel to energy production. In this study we explore the feasibility of using a low-cost, membraneless MEC for domestic wastewater treatment and methane production in both batch and continuous modes. Low-strength wastewater can be successfully treated by means of an MEC, obtaining significant amounts of methane. The results also suggest that hydrogenotrophic methanogenesis reduce the incidence of homoacetogenic activity, thus improving the overall MEC performance. However, gas production rates are low and important aspects such as methane solubility in water still remain a challenge. Overall, MECs can offer competitive advantages not only for low-strength wastewater treatment but also as an aid to anaerobic methane production by improving the chemical oxygen demand (COD) removal and methane production rates.
Keywords: Microbial electrolysis cell; MEC; Methane; Electromethanogenesis; Wastewater (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116301835
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:93:y:2016:i:c:p:442-448
DOI: 10.1016/j.renene.2016.02.083
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().