Power conversion system for high altitude wind power generation with medium voltage AC transmission
Jeevan Adhikari,
I.V. Prasanna and
S.K. Panda
Renewable Energy, 2016, vol. 93, issue C, 562-578
Abstract:
High Altitude Wind Power (HAWP) generating system provides clean energy at low cost and high capacity factor due to reduced size of the turbine and high speed streamlined wind at high altitude. An air-borne wind turbine (AWT) at high altitude extracts kinetic energy from wind using buoyancy provided by the blimp/aerostat. The generated electrical power is then transmitted to the ground based station (without any power conditioning) using the transmission lines (tether). The power conversion system (PCS) for harnessing HAWP is proposed in this paper. The proposed PCS consists of a three-level neutral point clamped (NPC) rectifier, a three-level NPC DC–DC converter followed by a two-level inverter. Modelling, design and control of the PCS are presented and discussed. The PCS provides generation side maximum power-point tracking (MPPT) using sensorless optimal torque control technique. The DC–DC converter provides electrical isolation as well as voltage step-down functions. A modified proportional resonant (PR) control which can selectively eliminate lower order current harmonics of the grid-connected inverter is also presented. The proposed control scheme of the PCS is evaluated through simulation studies using software programs like PSIM and MATLAB. A scaled-down 1 kW laboratory prototype of the complete PCS is designed, built and tested. The experimental test results obtained validate the proposed control scheme for efficient power generation from high altitude wind and interface to the grid/load.
Keywords: High altitude wind power (HAWP); Permanent magnet synchronous generator (PMSG); Power conversion system; Maximum power-point tracking; Three-level NPC rectifier; Inverter; Resonant control (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116301884
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:93:y:2016:i:c:p:562-578
DOI: 10.1016/j.renene.2016.03.004
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().