EconPapers    
Economics at your fingertips  
 

A finite element model for high enthalpy two-phase flow in geothermal wellbores

Somaieh Akbar, N. Fathianpour and R. Al Khoury

Renewable Energy, 2016, vol. 94, issue C, 223-236

Abstract: This paper introduces a computational model for transient high enthalpy fluid flow through geothermal wellbores. The drift-flux model is utilized to formulate the physical behavior of fluid, and the constitutive relationships are described using relevant equations of state and empirical relationships. The governing equations are solved using the finite element method. All important physical phenomena and processes occurring along the wellbore, including buoyancy, phase change, compressibility, thermal interaction, wall friction and slip between phases are considered. Airlifting of water and air, initially existing in the wellbore before production, is also considered. During airlifting and early stages of production, two fluids exist along the wellbore: airlifted water-dry air fluid, and reservoir water-vapor fluid; giving rise to a discontinuity in thermodynamic properties between the two fluids. The discontinuity is modeled using the level-set method. Two numerical examples illustrating the computational capability and accuracy of the model are presented. The physical phenomena occurring during airlifting and production along the wellbore are highlighted.

Keywords: High enthalpy geothermal systems; Wellbore; Drift-flux model; Level set; Airlift (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations Track citations by RSS feed

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811630218X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:94:y:2016:i:c:p:223-236

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Series data maintained by Dana Niculescu ().

 
Page updated 2017-09-29
Handle: RePEc:eee:renene:v:94:y:2016:i:c:p:223-236