Impact of cold conditions on diesel injection processes of biodiesel blends
P. Tinprabath,
C. Hespel,
S. Chanchaona and
F. Foucher
Renewable Energy, 2016, vol. 96, issue PA, 270-280
Abstract:
In this article, we report experimental results on the impact of cold conditions on diesel and biodiesel blends injection processes. We focus on cold conditions in view of the new Euro VI standards concerning problems related to cold-start. A Bosch CRI 3.1 piezoelectric injector was used on a typical diesel engine. Five fuel types were tested: diesel, winter diesel, diesel–biodiesel blends (B50), a winter diesel-biodiesel blend (B50(W)) and pure biodiesel (B100). Injection pressures of 30–60 MPa were tested (during start-up of the engine) in order to study the injection flow characteristics at room temperature and in cold conditions. Under cold conditions, the discharge coefficients for all fuels were lower than at room temperature. When the fraction of biodiesel in the blend increased, the discharge coefficients decreased slightly. Spray penetration increased and spray angle strongly decreased in cold conditions. This behavior was particularly clear for the B100 fuel. Winter diesel despite a higher viscosity than diesel showed most interesting performance in terms of discharge coefficient both at low temperature than at room temperature. These benefits disappear with the blend with biodiesel. New correlation coefficients for estimating the discharge coefficient and the spray angle are presented for cold conditions.
Keywords: Cold conditions; Biodiesel blend; Discharge coefficient; Spray penetration; Spray angle (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116303640
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:96:y:2016:i:pa:p:270-280
DOI: 10.1016/j.renene.2016.04.062
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().