Restoring the missing high-frequency fluctuations in a wind power model based on reanalysis data
Jon Olauson,
Hans Bergström and
Mikael Bergkvist
Renewable Energy, 2016, vol. 96, issue PA, 784-791
Abstract:
A previously developed model based on MERRA reanalysis data underestimates the high-frequency variability and step changes of hourly, aggregated wind power generation. The goal of this work is to restore these fluctuations. Since the volatility of the high-frequency signal varies in time, machine learning techniques were employed to predict the volatility. As predictors, derivatives of the output from the original “MERRA model” as well as empirical orthogonal functions of several meteorological variables were used. A FFT-IFFT approach, including a search algorithm for finding appropriate phase angles, was taken to generate a signal that was subsequently transformed to simulated high-frequency fluctuations using the predicted volatility. When comparing to the original MERRA model, the improved model output has a power spectral density and step change distribution in much better agreement with measurements. Moreover, the non-stationarity of the high-frequency fluctuations was captured to a large degree. The filtering and noise addition however resulted in a small increase in the RMS error.
Keywords: Wind power variability; Statistical modelling; Machine learning; Power spectral density; MERRA reanalysis dataset (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116304189
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:96:y:2016:i:pa:p:784-791
DOI: 10.1016/j.renene.2016.05.008
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().