Heat recovery from air in underground transport tunnels
Konstantinos Ninikas,
Nicholas Hytiris,
Rohinton Emmanuel,
Bjorn Aaen and
Paul L. Younger
Renewable Energy, 2016, vol. 96, issue PA, 843-849
Abstract:
The performance of a typical air source heat pump could be increased dramatically by a relatively stable air temperature with a high humidity, even during the peak heating months. In this short communication we show such conditions exist in the underground transport tunnels of the Glasgow Subway system, where we had conducted an annual survey of air flow, air temperature and relative humidity at thirty different points within the subway network. We found relatively stable temperatures and sufficient air movement inside the twin tunnels (average temperature during winter = 15 °C, annual variation = 2.6 °C; average air flow = 16.47 m3/h) indicating higher system efficiency compared to a conventional air source heat pump installation. Potential energy and carbon savings are discussed.
Keywords: Heat recovery; Thermal comfort; Air source heat pump (search for similar items in EconPapers)
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116304268
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:96:y:2016:i:pa:p:843-849
DOI: 10.1016/j.renene.2016.05.015
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().