A superstructure model of an isolated power supply system using renewable energy: Development and application to Jeju Island, Korea
Sunghoon Kwon,
Wangyun Won and
Jiyong Kim
Renewable Energy, 2016, vol. 97, issue C, 177-188
Abstract:
In this study, we aim to develop a superstructure-based optimization model using mixed integer linear programming (MILP) to determine the optimal combination and sizing for a hybrid renewable energy system to be used in an isolated area. The developed model has a three-layered energy structure to reflect the current reality in which energy production and consumption sites are generally separate. A variety of economic factors, including distance between facilities and an installation area, are considered for a more accurate estimation of the total annualized cost. Two types of optimization models, i.e., with and without a battery, are proposed to evaluate the economic and technical effects of a storage device to resolve operation issues caused by intermittent resources. An application case study on Jeju Island, Korea, confirms that the proposed model is suitable for decision making at the planning stage of a renewable energy system.
Keywords: Renewable energy; Optimization; Power supply; Hybrid energy; Sensitivity analysis (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116304840
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:97:y:2016:i:c:p:177-188
DOI: 10.1016/j.renene.2016.05.074
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().