Production of biodiesel from castor oil using iron (II) doped zinc oxide nanocatalyst
G. Baskar and
S. Soumiya
Renewable Energy, 2016, vol. 98, issue C, 101-107
Abstract:
The depletion of fossil fuels has caused the price of petroleum to rise remarkably and created need for alternative energy such as biodiesel. In the present study, the biodiesel was produced from castor oil using ferromagnetic zinc oxide nanocomposite as heterogeneous catalyst for transesterification reaction. Single phase of nanocatalyst were confirmed by X-Ray Diffraction analysis. The spherical shape of the aggregated nanocatalyst was observed in Scanning Electron Microscopy. Magnetic properties were analysed using vibrating sample magnetometer. Atomic Force Microscopic analysis revealed the larger surface area and roughness of nanocatalyst. The biodiesel yield of 91% (w/w) was obtained in 50 min at 55 °C with 14 wt % catalyst loading and 12:1 methanol/oil ratio and was confirmed by Gas chromatograph with Mass Spectrometer. The result showed that the iron (II) doped ZnO nanocatalyst is a promising catalyst for the production of biodiesel via heterogeneous catalytic transesterification under milder reaction conditions.
Keywords: Heterogeneous catalyst; Biodiesel; Castor oil; Ferromagnetism; Zinc oxide nanocomposite (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116301690
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:98:y:2016:i:c:p:101-107
DOI: 10.1016/j.renene.2016.02.068
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().