EconPapers    
Economics at your fingertips  
 

Community dynamics and significance of anaerobic protozoa during biomethanation of lignocellulosic waste

Priya Prabhakaran, Arya Bhasi, Shabeer Ali, Nimi Narayanan, Manilal Vattackatt Balakrishnan and Krishnakumar Bhaskaran

Renewable Energy, 2016, vol. 98, issue C, 148-152

Abstract: The diversity and community dynamics of anaerobic protozoa and their functional role during anaerobic digestion of a typical lignocellulose biomass in a lab scale leach bed coupled UASB reactor is reported in this study. The functional role played by different protozoa during various stages of methanogenesis was analyzed through linear regression analysis of individual protozoon counts with major hydrolytic enzyme activities, volatile fatty acid levels and biogas production. The protozoa community in the digester was represented by ciliates (Metopus, Cyclidium and Colpoda) and flagellates (Rhyncomonas, Menoidium and Bodo). Regression analysis revealed the relationship between total protozoa counts with the activity of cellulase (R2 = 0.71) pectinase (R2 = 0.50) amylase (R2 = 0.53) and xylanase (R2 = 0.34), total volatile fatty acid levels (R2 = 0.86) and biogas production (R2 = 0.78) in the digester. Moreover, it was found that both volatile fatty acid and biogas production is correlated with ciliate and flagellate populations. This study underlines the importance of both ciliates and flagellates in the anaerobic digestion process and, more specifically, the contribution by individual protozoa on hydrolysis, which is the rate limiting stage in anaerobic digestion.

Keywords: Anaerobic digestion; Cellulase; Ciliate; Flagellate; Lignocellulose; Pectinase (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116302695
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:98:y:2016:i:c:p:148-152

DOI: 10.1016/j.renene.2016.03.085

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:98:y:2016:i:c:p:148-152