EconPapers    
Economics at your fingertips  
 

Improvement of wheat straw hydrolysis by cellulolytic blends of two Penicillium spp

Jitendra Kumar Saini, Reeta Rani Singhania, Alok Satlewal, Reetu Saini, Ravi Gupta, Deepak Tuli, Anshu Mathur and Mukund Adsul

Renewable Energy, 2016, vol. 98, issue C, 43-50

Abstract: Co-culture of fungal strains Penicillium janthinellum EMS-UV-8 (E), Penicillium funiculosum strain P (P) and Aspergillus sp. strain G (G) and blending of their crude cellulase were evaluated for improvements in cellulase activities as well as for enhanced hydrolysis of dilute acid pretreated wheat straw (PWS). The blending of crude enzymes of P and E enhanced the hydrolysis of PWS more effectively due to synergism in cellulolytic enzyme activities. Here, three types of blends were made on the basis of equal FPUs, equal protein content or fixed volume containing different proportions of individual enzymes, the former blend hydrolyzed 42.6% of PWS due to the 98%,62%, 64% and 34% synergistic enhancement in endo-glucanase, cellulase (FPU), β-glucosidase and xylanase activities, respectively. Hydrolysis at 10% solid loading of PWS in roller bottle reactor with this blend further enhanced hydrolysis yield to 74% within 24 h, which was much better than the corresponding hydrolysis yields of individual (38.1% by E and 61.5% by P) or the commercial enzyme (62.3%). This study proved that synergistic blends of cellulases from two Penicillium spp. are cost-effective tools for efficient wheat straw hydrolysis for on-site biofuel production.

Keywords: Penicillium janthinellum; Penicillium funiculosum; Enzyme blends and synergy; Wheat straw hydrolysis; Cellulases; Roller bottle reactor (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116300258
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:98:y:2016:i:c:p:43-50

DOI: 10.1016/j.renene.2016.01.025

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:98:y:2016:i:c:p:43-50