Economic impacts of AI-augmented R&D
Tamay Besiroglu,
Nicholas Emery-Xu and
Neil Thompson
Research Policy, 2024, vol. 53, issue 7
Abstract:
Since its emergence around 2010, deep learning has rapidly become the most important technique in Artificial Intelligence (AI), producing an array of scientific firsts in areas as diverse as protein folding, drug discovery, integrated chip design, and weather prediction. As scientists and engineers adopt deep learning, it is important to consider what effect widespread deployment would have on scientific progress and, ultimately, economic growth. We assess this impact by estimating the idea production function for AI in two computer vision tasks that are considered key test-beds for deep learning and show that AI idea production is notably more capital-intensive than traditional R&D. Because increasing the capital-intensity of R&D accelerates the investments that make scientists and engineers more productive, our work suggests that AI-augmented R&D has the potential to speed up technological change and economic growth.
Keywords: Artificial intelligence; Deep learning; Endogenous growth theory; Production function (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0048733324000866
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:respol:v:53:y:2024:i:7:s0048733324000866
DOI: 10.1016/j.respol.2024.105037
Access Statistics for this article
Research Policy is currently edited by M. Bell, B. Martin, W.E. Steinmueller, A. Arora, M. Callon, M. Kenney, S. Kuhlmann, Keun Lee and F. Murray
More articles in Research Policy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().