What can cluster analysis offer in investing? - Measuring structural changes in the investment universe
Min Kyu Sim,
Shijie Deng and
Xiaoming Huo
International Review of Economics & Finance, 2021, vol. 71, issue C, 299-315
Abstract:
The return on assets of the investment universe tends to form a cluster structure. This study quantifies this strength of the clustering tendency as a single econometric measure, referred to as modularity. Through an empirical study of the US equity market, we demonstrate that the strength of the clustering tendency changes over time with market fluctuations. That is, normal markets tend to have a clear cluster structure (high modularity), while stressed markets tend to have a blurry cluster structure (low modularity). Modularity assesses the quality of an investment opportunity set in terms of potential diversification benefits. Modularity is an important pricing variable in the cross-sectional returns of US stocks. From 1992 to 2015, the average return of the stocks with the lowest sensitivity to modularity (low modularity beta) exceeds that of the stocks with the highest sensitivity (high modularity beta) by approximately 10.49% annually, adjusted for the Fama-French five-factor exposures. The inclusion of modularity as an asset pricing factor, therefore, expands the investment opportunity set for factor-based investors.
Keywords: Cluster analysis; Investment opportunity set; Basis assets; Asset pricing model; Factor model (search for similar items in EconPapers)
JEL-codes: C10 C58 D85 G11 G12 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1059056020302069
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reveco:v:71:y:2021:i:c:p:299-315
DOI: 10.1016/j.iref.2020.09.004
Access Statistics for this article
International Review of Economics & Finance is currently edited by H. Beladi and C. Chen
More articles in International Review of Economics & Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().