EconPapers    
Economics at your fingertips  
 

Using boosting algorithms to predict bank failure: An untold story

Xuan T.T. Pham and Tin H. Ho

International Review of Economics & Finance, 2021, vol. 76, issue C, 40-54

Abstract: From a modeling point of view, our work provides a novel approach to better use XGBoost for bank failure prediction, determining the essential technical aspects that can improve the predictive accuracy. Of these technical aspects, the two crucial factors are assigning correct values to target variables and careful predictor selection (through ANOVA, correlation, information value tests, and weight of evidence). We also highlight that bank failure could be predicted four to five quarters earlier when all predictive signals simultaneously appear. Hence, we strongly suggest using quarterly data instead of yearly data. In addition to practical implications, our present work also contributed to the existing literature. We confirm the results of existing studies that emphasized that XGBoost has strong predictive power (Carmona, Climent, and Momparler (2018)). Moreover, we provide evidence that XGBoost outperforms other models in the same boosting family, including gradient boosting and AdaBoost, through an intensive comparison of predictive power. These contributions might facilitate future work on bank failure prediction.

Keywords: U.S. banks; Bank failure prediction; Boosting algorithms; XGBoost; Variable selection techniques; Target variables (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1059056021001131
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reveco:v:76:y:2021:i:c:p:40-54

DOI: 10.1016/j.iref.2021.05.005

Access Statistics for this article

International Review of Economics & Finance is currently edited by H. Beladi and C. Chen

More articles in International Review of Economics & Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reveco:v:76:y:2021:i:c:p:40-54