Evaluating influential nodes for the Chinese energy stocks based on jump volatility spillover network
Chuangxia Huang,
Xian Zhao,
Yunke Deng,
Xiaoguang Yang and
Xin Yang
International Review of Economics & Finance, 2022, vol. 78, issue C, 81-94
Abstract:
We employ a complex network approach to dig out the influential Chinese energy stocks in this paper. We first use the 5-min high-frequency data of the Chinese energy stocks over the period of 2013–2018 to build a static jump volatility spillover network. Then a novel method of entropy weight TOPSIS (Technique for Order Preference by Similarities to Ideal Solution) is proposed to evaluate the influential nodes. Furthermore, we construct dynamic networks with the help of time-varying Granger causality test. Empirical analyses show that: (1) Combining static network and the proposed entropy weight TOPSIS scores, we find that China Petroleum Engineering & Construction Corp, Zhengzhou Coal Industry & Electric Power Co.,Ltd., Shenzhen Guangju Energy Co.,Ltd., China Coal Energy Company Limited and Shaanxi Provincial Natural Gas Co.,Ltd. are influential energy stocks. (2) The advantage of entropy weight TOPSIS lies in the fact that it has the highest correlation coefficient between its score and jump volatility is the highest, comparing with the traditional methods such as equal weight, TOPSIS, analytic hierarchy process and principal component analysis. (3) Particularly, by making full use of dynamic network analysis, a very interesting finding in this paper indicates that the network density also provides an “early warning” for possible upcoming crises. (4) In addition, a very interesting fact in point is that most of the stocks with larger market capitalization usually have high-level influence during Chinese stock market crash; such smallcapitalization energy stocks with high scores are however particularly crucial for investors and regulatory authorities to grasp the risk characteristic. The results can provide us some light for finding out those influential energy stocks whose volatilities may cause many other stocks in the energy industry to rise and fall.
Keywords: Complex network; Chinese energy stock market; High-frequency data; Jump volatility; Entropy weight TOPSIS (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1059056021002252
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reveco:v:78:y:2022:i:c:p:81-94
DOI: 10.1016/j.iref.2021.11.001
Access Statistics for this article
International Review of Economics & Finance is currently edited by H. Beladi and C. Chen
More articles in International Review of Economics & Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().