On the predictive power of tweet sentiments and attention on bitcoin
Sandy Suardi,
Atiqur Rahman Rasel and
Bin Liu
International Review of Economics & Finance, 2022, vol. 79, issue C, 289-301
Abstract:
This paper investigates the predictive power of information contained in social media tweets on bitcoin market dynamics. Using Valence Aware Dictionary for Sentiment Reasoning (VADER), we extract useful information from tweets and construct two factors – sentiment dispersion (SD) and investor attention (IA) – to test their predictive power. We show that investors face greater return volatility for rising sentiment dispersion associated with more significant market uncertainty. Further, IA is found to predict bitcoin trading volume but not returns and volatility. Finally, we design an IA-induced trading strategy that yields superior performance to the passive buy-and-hold strategy in 2018. However, it does not deliver superior performance in other years during the sample period suggesting that investor attention alone as a trading parameter does not produce superior performance over the long term.
Keywords: Bitcoin; Investor sentiment; Investor attention; Bitcoin trading strategy; Bitcoin return volatility (search for similar items in EconPapers)
JEL-codes: G15 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1059056022000375
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reveco:v:79:y:2022:i:c:p:289-301
DOI: 10.1016/j.iref.2022.02.017
Access Statistics for this article
International Review of Economics & Finance is currently edited by H. Beladi and C. Chen
More articles in International Review of Economics & Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().