A cryptocurrency empirical study focused on evaluating their distribution functions
Carmen López-Martín,
Raquel Arguedas-Sanz and
Sonia Benito Muela
Authors registered in the RePEc Author Service: Raquel Arguedas Sanz
International Review of Economics & Finance, 2022, vol. 79, issue C, 387-407
Abstract:
This paper thoroughly examines the statistical properties of cryptocurrency returns, particularly focusing on studying which is the best statistical distribution for fitting this type of data. The preliminary statistical study reveals (i) high volatility, (ii) an inverse leverage effect, (iii) skewed distributions and (iv) high kurtosis. To capture the nonnormal characteristics observed in cryptocurrency data, we verified the goodness of fit of a large set of distributions, both symmetric and skewed distributions such as skewed Student-t, skewed generalized t, skewed generalized error and the inverse hyperbolic sign distributions. The results show that the skewed distributions outperform normal and Student-t distributions in fitting cryptocurrency data, although there is no one skewed distribution that systematically better fits the data. In addition, we compare these distributions in terms of their ability to forecast the market risk of cryptocurrencies. In line with the results obtained in the statistical analysis, we find that the skewed distributions provide better risk estimates than the normal and Student-t distributions, both in short and long positions, with SGED being the distribution that provides better results.
Keywords: Cryptocurrencies; Distributions; Skewness; Fat tail; Risk management (search for similar items in EconPapers)
JEL-codes: C46 C52 E17 G17 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1059056022000417
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reveco:v:79:y:2022:i:c:p:387-407
DOI: 10.1016/j.iref.2022.02.021
Access Statistics for this article
International Review of Economics & Finance is currently edited by H. Beladi and C. Chen
More articles in International Review of Economics & Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().