A large-dimensional test for cross-sectional anomalies:Efficient sorting revisited
Gianluca De Nard and
Zhao Zhao
International Review of Economics & Finance, 2022, vol. 80, issue C, 654-676
Abstract:
Many researchers seek factors that predict the cross-section of stock returns. In finance, the key is to replicate anomalies by long–short portfolios based on their firm characteristics, with microcap biases alleviated via New York Stock Exchange (NYSE) breakpoints and value-weighted returns. In econometrics, the key is to include a covariance matrix estimator of stock returns for (mimicking) the portfolio construction. This paper marries these two strands of literature in order to test the zoo of cross-sectional anomalies by injecting size controls, basically NYSE breakpoints and value-weighted returns, into efficient sorting. We propose to use a covariance matrix estimator for ultra-high dimensions (up to 5,000) taking into account large, small and microcap stocks. We demonstrate that using a nonlinear shrinkage estimator of the covariance matrix substantially enhances the power of tests for cross-sectional anomalies: On average, t-statistics more than double. Furthermore, the proposed revisited efficient sorting method computes even highly significant factor portfolios net of transaction costs.
Keywords: Anomalies; Cross-section of returns; Efficient sorting; Large dimensions; Markowitz portfolio selection; Nonlinear shrinkage (search for similar items in EconPapers)
JEL-codes: C13 C58 G11 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1059056022000703
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reveco:v:80:y:2022:i:c:p:654-676
DOI: 10.1016/j.iref.2022.02.049
Access Statistics for this article
International Review of Economics & Finance is currently edited by H. Beladi and C. Chen
More articles in International Review of Economics & Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().