EconPapers    
Economics at your fingertips  
 

Intelligent portfolio construction via news sentiment analysis

Ming-Chin Hung, Ping-Hung Hsia, Xian-Ji Kuang and Shih-Kuei Lin

International Review of Economics & Finance, 2024, vol. 89, issue PA, 605-617

Abstract: In this study, we apply deep learning and natural language processing methods to construct the view distribution in the Black–Litterman model. We implement this approach for portfolio allocation and perform statistical analysis to assess portfolio performance. The empirical analysis yields two main results. For the three deep learning models, we use mean square error to compare the model prediction results. The gated recurrent unit (GRU) model outperforms the other two models in the price prediction of seven stock assets. Moreover, it is more effective in capturing future trends and stock prices. The long short-term memory (LSTM) model outperforms the recurrent neural network (RNN) model. Moreover, in the comparison of the portfolio models, the Black–Litterman model, constructed by using Google’s Bidirectional Encoder Representations from Transformers (BERT) to measure news sentiment and by using the GRU model to predict stock prices, yields the highest annualized return rate of 46.6%. In addition, it has the highest Sharpe and Sortino ratios of 13.0% and 17.9%, respectively, which means that under a certain degree of risk, the Black–Litterman model still outperforms other constructed portfolios.

Keywords: Portfolio theory; Sentiment analysis; Deep learning method; Natural language processing (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1059056023003131
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reveco:v:89:y:2024:i:pa:p:605-617

DOI: 10.1016/j.iref.2023.07.103

Access Statistics for this article

International Review of Economics & Finance is currently edited by H. Beladi and C. Chen

More articles in International Review of Economics & Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reveco:v:89:y:2024:i:pa:p:605-617