Strong mixing properties of max-infinitely divisible random fields
Clément Dombry and
Frédéric Eyi-Minko
Stochastic Processes and their Applications, 2012, vol. 122, issue 11, 3790-3811
Abstract:
Let η=(η(t))t∈T be a sample continuous max-infinitely random field on a locally compact metric space T. For a closed subset S⊂T, we denote by ηS the restriction of η to S. We consider β(S1,S2), the absolute regularity coefficient between ηS1 and ηS2, where S1,S2 are two disjoint closed subsets of T. Our main result is a simple upper bound for β(S1,S2) involving the exponent measure μ of η: we prove that β(S1,S2)≤2∫P[η≮S1f,η≮S2f]μ(df), where f≮Sg means that there exists s∈S such that f(s)≥g(s).
Keywords: Absolute regularity coefficient; Max-infinitely divisible random field; Max-stable random field; Central limit theorem for weakly dependent random field (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441491200141X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:122:y:2012:i:11:p:3790-3811
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2012.06.013
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().