EconPapers    
Economics at your fingertips  
 

Scenery reconstruction on finite abelian groups

Hilary Finucane, Omer Tamuz and Yariv Yaari

Stochastic Processes and their Applications, 2014, vol. 124, issue 8, 2754-2770

Abstract: We consider the question of when a random walk on a finite abelian group with a given step distribution can be used to reconstruct a binary labeling of the elements of the group, up to a shift. Matzinger and Lember (2006) give a sufficient condition for reconstructability on cycles. While, as we show, this condition is not in general necessary, our main result is that it is necessary when the length of the cycle is prime and larger than 5, and the step distribution has only rational probabilities. We extend this result to other abelian groups.

Keywords: Scenery reconstruction; Random walks; Finite abelian groups (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414914000714
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:124:y:2014:i:8:p:2754-2770

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2014.03.012

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:124:y:2014:i:8:p:2754-2770