On functional limits of short- and long-memory linear processes with GARCH(1,1) noises
Rong-Mao Zhang,
Chor-yiu (CY) Sin and
Shiqing Ling
Stochastic Processes and their Applications, 2015, vol. 125, issue 2, 482-512
Abstract:
This paper considers the short- and long-memory linear processes with GARCH (1,1) noises. The functional limit distributions of the partial sum and the sample autocovariances are derived when the tail index α is in (0,2), equal to 2, and in (2,∞), respectively. The partial sum weakly converges to a functional of α-stable process when α<2 and converges to a functional of Brownian motion when α≥2. When the process is of short-memory and α<4, the autocovariances converge to functionals of α/2-stable processes; and if α≥4, they converge to functionals of Brownian motions. In contrast, when the process is of long-memory, depending on α and β (the parameter that characterizes the long-memory), the autocovariances converge to either (i) functionals of α/2-stable processes; (ii) Rosenblatt processes (indexed by β, 1/2<β<3/4); or (iii) functionals of Brownian motions. The rates of convergence in these limits depend on both the tail index α and whether or not the linear process is short- or long-memory. Our weak convergence is established on the space of càdlàg functions on [0,1] with either (i) the J1 or the M1 topology (Skorokhod, 1956); or (ii) the weaker form S topology (Jakubowski, 1997). Some statistical applications are also discussed.
Keywords: GARCH(1,1); Heavy tail; Linear process; Long memory; Rosenblatt process; Short memory (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414914002300
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:125:y:2015:i:2:p:482-512
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2014.09.016
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().