On the strong Feller property for stochastic delay differential equations with singular drift
Stefan Bachmann
Stochastic Processes and their Applications, 2020, vol. 130, issue 8, 4563-4592
Abstract:
In this paper, we prove the strong Feller property for stochastic delay (or functional) differential equations with singular drift. We extend an approach of Maslowski and Seidler to derive the strong Feller property of those equations, see Maslowski and Seidler (2000). The argumentation is based on the well-posedness and the strong Feller property of the equations’ drift-free version. To this aim, we investigate a certain convergence of random variables in topological spaces in order to deal with discontinuous drift coefficients.
Keywords: Stochastic delay differential equations; Stochastic functional differential equation; Strong feller property; Singular drift; Zvonkin’s transformation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414920300247
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:8:p:4563-4592
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2020.01.008
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().