Hyperbolic cosine ratio and hyperbolic sine ratio random fields
Chunsheng Ma
Statistics & Probability Letters, 2021, vol. 179, issue C
Abstract:
This paper introduces several vector random fields whose finite-dimensional characteristic functions are of hyperbolic type, including generalized logistic, hyperbolic secant, hyperbolic tangent, hyperbolic cosine ratio, and hyperbolic sine ratio vector random fields. They are elliptically contoured vector random fields with all orders of moments, and are infinitely divisible. In the scalar case, we make the peakedness comparison among these random fields. Hyperbolic cosine ratio and hyperbolic since ratio Lévy processes are formulated as well.
Keywords: Elliptically contoured random field; Gaussian random field; Peakedness; Stochastic order (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715221001747
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:179:y:2021:i:c:s0167715221001747
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2021.109212
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().