Doubly penalized likelihood estimator in heteroscedastic regression
Ming Yuan and
Grace Wahba
Statistics & Probability Letters, 2004, vol. 69, issue 1, 11-20
Abstract:
A penalized likelihood estimation procedure is developed for heteroscedastic regression. A distinguishing feature of the new methodology is that it estimates both the mean and variance functions simultaneously without parametric assumption for either. An efficient implementation of the estimating procedure is also provided. The procedure is illustrated by a Monte Carlo example. A potential generalization, and application to the covariance modeling problem in numerical weather prediction is noted.
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(04)00101-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:69:y:2004:i:1:p:11-20
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().