EconPapers    
Economics at your fingertips  
 

Doubly penalized likelihood estimator in heteroscedastic regression

Ming Yuan and Grace Wahba

Statistics & Probability Letters, 2004, vol. 69, issue 1, 11-20

Abstract: A penalized likelihood estimation procedure is developed for heteroscedastic regression. A distinguishing feature of the new methodology is that it estimates both the mean and variance functions simultaneously without parametric assumption for either. An efficient implementation of the estimating procedure is also provided. The procedure is illustrated by a Monte Carlo example. A potential generalization, and application to the covariance modeling problem in numerical weather prediction is noted.

Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(04)00101-4
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:69:y:2004:i:1:p:11-20

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:69:y:2004:i:1:p:11-20