EconPapers    
Economics at your fingertips  
 

Exploring technology opportunities by visualizing patent information based on generative topographic mapping and link prediction

Byungun Yoon and Christopher L. Magee

Technological Forecasting and Social Change, 2018, vol. 132, issue C, 105-117

Abstract: The shortening lifetime of technology requires companies to make intensive efforts to continuously explore new technology. Although many researchers have proposed visualization methods to find technology opportunities, little attention has been paid to present detailed directions of technology development with specified characteristics of technology. Thus, this research aims to suggest a systematic approach to conducting technology opportunity analysis by visualizing patent information, such as patent documents and citation relationships. First, keywords that explain core concepts, functions, and so on are extracted from collected patent documents by text mining. Second, patents are visualized in a two-dimensional space, and vacant cells are identified with their estimated keyword vectors by generative topographic mapping (GTM). Third, since many vacant cells will be potential candidates for developing new technologies, link prediction tools can choose promising vacant cells to connect existing cells with potential, but not yet existent, cells. Finally, the results of prediction are tested by comparing the predicted cells with the actual developed cells. The research reported in this paper is based in three technologies that have emerging, stable, and declining patterns, in order to illustrate the proposed approach, and investigate in which types it is relevant. It is found that the proposed approach provided a good prediction performance in the case of a technology that has a stable pattern. In addition, among link prediction methods, a semantic similarity-based approach showed better prediction results than a machine learning technique due to modest data availability for training. Thus, the results of this research can help R&D managers plan and evaluate R&D projects for technology development.

Keywords: Technology opportunity analysis; Visualization; Patent information; GTM; Link prediction (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (30)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162517309848
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:132:y:2018:i:c:p:105-117

DOI: 10.1016/j.techfore.2018.01.019

Access Statistics for this article

Technological Forecasting and Social Change is currently edited by Fred Phillips

More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:tefoso:v:132:y:2018:i:c:p:105-117