EconPapers    
Economics at your fingertips  
 

Centralized simulated annealing for alleviating vehicular congestion in smart cities

Hayder M. Amer, Hayder Al-Kashoash, Matthew Hawes, Moumena Chaqfeh, Andrew Kemp and Lyudmila Mihaylova

Technological Forecasting and Social Change, 2019, vol. 142, issue C, 235-248

Abstract: Vehicular traffic congestion is a serious problem arising in many cities around the world, due to the increasing number of vehicles utilizing roads of a limited capacity. Often the congestion has a considerable influence on the travel time, travel distance, fuel consumption and air pollution. This paper proposes a novel dynamic centralized simulated annealing based approach for finding optimal vehicle routes using a VIKOR type of cost function. Five attributes: the average travel speed of the traffic, vehicles density, roads width, road traffic signals and the roads' length are utilized by the proposed approach to find the optimal paths. The average travel speed and vehicles density values can be obtained from the sensors deployed in smart cities and communicated to vehicles and roadside communication units via vehicular ad hoc networks. The performance of the proposed algorithm is compared with four other algorithms, over two test scenarios: Birmingham and Turin city centres. These show the proposed method improves traffic efficiency in the presence of congestion by an overall average of 24.05%, 48.88% and 36.89% in terms of travel time, fuel consumption and CO2 emission, respectively, for a test scenario from Birmingham city in the UK. Additionally, similar performance patterns are achieved for the a test with data from Turin, Italy.

Keywords: Traffic congestion control; Simulated annealing; IoV applications; Multi-attribute decision making (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162517312052
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:142:y:2019:i:c:p:235-248

DOI: 10.1016/j.techfore.2018.09.013

Access Statistics for this article

Technological Forecasting and Social Change is currently edited by Fred Phillips

More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:tefoso:v:142:y:2019:i:c:p:235-248