EconPapers    
Economics at your fingertips  
 

Joint analysis of eco-efficiency and eco-innovation with common weights in two-stage network DEA: A big data approach

Reza Kiani Mavi, Reza Farzipoor Saen and Mark Goh

Technological Forecasting and Social Change, 2019, vol. 144, issue C, 553-562

Abstract: The joint investigation of economic growth and environmental impact has led research to develop evaluation models on environmental and economic changes, especially on eco-innovation and eco-efficient products. In this paper, a novel approach is proposed to find the common set of weights in a two-stage network data envelopment analysis based on goal programming to analyze the joint effects of eco-efficiency and eco-innovation, considering the undesirable inputs, intermediate products, and the outputs in the context of big data. Applying the model to the countries in the OECD and ranking the results show that Switzerland is highest in eco-efficiency and Estonia is highest in eco-innovation.

Keywords: Eco-efficiency; Eco-innovation; Two-stage network DEA; Goal programming; Big data; OECD (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162517313306
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:144:y:2019:i:c:p:553-562

Access Statistics for this article

Technological Forecasting and Social Change is currently edited by Fred Phillips

More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

 
Page updated 2019-08-24
Handle: RePEc:eee:tefoso:v:144:y:2019:i:c:p:553-562