A deep learning methodology for automatic extraction and discovery of technical intelligence
Jianguo Xu,
Lixiang Guo,
Jiang Jiang,
Bingfeng Ge and
Mengjun Li
Technological Forecasting and Social Change, 2019, vol. 146, issue C, 339-351
Abstract:
It is imperative and arduous to acquire product and business intelligence of global technical market. In this paper, a deep learning methodology is proposed to automatically extract and discover vital technical information from large-scale news dataset. More specifically, six kinds of technical elements are first defined to provide the concrete syntax information. Next, the CRF-BiLSTM approach is used to automatically extract technical entities, in which a conditional random field (CRF) layer is added on top of bidirectional long short-term memory (BiLSTM) layer. Then, three indicators including timeliness, influence and innovativeness are designed to evaluate the value of intelligence comprehensively. Finally, as a case study, technical news on three military-related websites is utilized to illustrate the efficiency and effectiveness of the foregoing methodology with the result of 80.82 (F-score) in comparison to four other models. In more detail, data on unmanned systems are extracted to summarize the state-of-the-art, and track up-to-the-minute innovations and developments in this field.
Keywords: Technical intelligence; CRF-BiLSTM; Deep learning; Intelligence monitoring (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162518320389
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:146:y:2019:i:c:p:339-351
DOI: 10.1016/j.techfore.2019.06.004
Access Statistics for this article
Technological Forecasting and Social Change is currently edited by Fred Phillips
More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().