Horizon scanning in policy research database with a probabilistic topic model
Hyunuk Kim,
Sang-Jin Ahn and
Woo-Sung Jung
Technological Forecasting and Social Change, 2019, vol. 146, issue C, 588-594
Abstract:
National governments take advantage of collective intelligence when conducting foresight processes. They grasp emerging issues through expert reviews as well as public opinions. It raises national agendas and affects policy-making process. Therefore, by examining policy papers which contain societal issues, we can perceive past, current, and future environments. In this study, we exploit policy research database of Republic of Korea, which is a unique source that automatically collects all policy papers written by national research institutes, to extract latent topics and their trends over 10 years through a probabilistic topic model. Detected topics fairly correspond to expert-selected future drivers in national foresight report, implying that public discourse and policy agenda are coupled. We suggest to utilize open government data and text mining methods for building open foresight framework that various actors exchange their opinions on societal issues.
Keywords: Foresight; Horizon scanning; Policy research database; Topic modeling; Latent Dirichlet allocation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162518302099
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:146:y:2019:i:c:p:588-594
DOI: 10.1016/j.techfore.2018.02.007
Access Statistics for this article
Technological Forecasting and Social Change is currently edited by Fred Phillips
More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().