Emergence scoring to identify frontier R&D topics and key players
Alan L. Porter,
Jon Garner,
Stephen F. Carley and
Nils C. Newman
Technological Forecasting and Social Change, 2019, vol. 146, issue C, 628-643
Abstract:
Indicators of technological emergence promise valuable intelligence to those determining R&D priorities. We present an implemented algorithm to calculate emergence scores for topical terms from abstract record sets. We offer a family of emergence indicators deriving from those scores. Primary emergence indicators identify “hot topic” terms. We then use those to generate secondary indicators that reflect organizations, countries, or authors especially active at frontiers in a target R&D domain. We also flag abstract records (papers or patents) rich in emergent technology content, and we score research fields on relative degree of emergence. This paper presents illustrative results for example topics – Nano-Enabled Drug Delivery, Non-Linear Programming, Dye Sensitized Solar Cells, and Big Data.
Keywords: R&D assessment; R&D Indicators; Technology Emergence Indicators; Tech mining; Emerging technology (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162517314804
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:146:y:2019:i:c:p:628-643
DOI: 10.1016/j.techfore.2018.04.016
Access Statistics for this article
Technological Forecasting and Social Change is currently edited by Fred Phillips
More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().