EconPapers    
Economics at your fingertips  
 

Machine learning solutions to challenges in finance: An application to the pricing of financial products

Lirong Gan, Huamao Wang and Zhaojun Yang

Technological Forecasting and Social Change, 2020, vol. 153, issue C

Abstract: The recent fast development of machine learning provides new tools to solve challenges in many areas. In finance, average options are popular financial products among corporations, institutional investors, and individual investors for risk management and investment because average options have the advantages of cheap prices and their payoffs are not very sensitive to the changes of the underlying asset prices at the maturity date, avoiding the manipulation of asset prices and option prices. The challenge is that pricing arithmetic average options requires traditional numerical methods with the drawbacks of expensive repetitive computations and non-realistic model assumptions. This paper proposes a machine-learning method to price arithmetic and geometric average options accurately and in particular quickly. The method is model-free and it is verified by empirical applications as well as numerical experiments.

Keywords: Machine learning; Finance applications; Asian options; Model-free asset pricing; Financial technology (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162519312399
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:153:y:2020:i:c:s0040162519312399

DOI: 10.1016/j.techfore.2020.119928

Access Statistics for this article

Technological Forecasting and Social Change is currently edited by Fred Phillips

More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-23
Handle: RePEc:eee:tefoso:v:153:y:2020:i:c:s0040162519312399