EconPapers    
Economics at your fingertips  
 

Tension in big data using machine learning: Analysis and applications

Huamao Wang, Yumei Yao and Said Salhi

Technological Forecasting and Social Change, 2020, vol. 158, issue C

Abstract: The access of machine learning techniques in popular programming languages and the exponentially expanding big data from social media, news, surveys, and markets provide exciting challenges and invaluable opportunities for organizations and individuals to explore implicit information for decision making. Nevertheless, the users of machine learning usually find that these sophisticated techniques could incur a high level of tensions caused by the selection of the appropriate size of the training data set among other factors. In this paper, we provide a systematic way of resolving such tensions by examining practical examples of predicting popularity and sentiment of posts on Twitter and Facebook, blogs on Mashable, news on Google and Yahoo, the US house survey, and Bitcoin prices. Interesting results show that for the case of big data, using around 20% of the full sample often leads to a better prediction accuracy than opting for the full sample. Our conclusion is found to be consistent across a series of experiments. The managerial implication is that using more is not necessarily the best and users need to be cautious about such an important sensitivity as the simplistic approach may easily lead to inferior solutions with potentially detrimental consequences.

Keywords: Big data; Machine learning; Data size; Prediction accuracy; Social media (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162520310015
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:158:y:2020:i:c:s0040162520310015

DOI: 10.1016/j.techfore.2020.120175

Access Statistics for this article

Technological Forecasting and Social Change is currently edited by Fred Phillips

More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:tefoso:v:158:y:2020:i:c:s0040162520310015