EconPapers    
Economics at your fingertips  
 

A novel analysis of COVID 19 risk in India incorporating climatic and socioeconomic Factors

Srinidhi Jha, Manish Kumar Goyal, Brij Gupta and Anil Kumar Gupta

Technological Forecasting and Social Change, 2021, vol. 167, issue C

Abstract: This study investigates the influence of climate variables (pressure, relative humidity, temperature and wind speed) in inducing risk due to COVID 19 at rural, urban and total (rural and urban) population scale in 623 pandemic affected districts of India incorporating the socioeconomic vulnerability factors. We employed nonstationary extreme value analysis to model the different quantiles of cumulative COVID 19 cases in the districts by using climatic factors as covariates. Wind speed was the most dominating climatic factor followed by relative humidity, pressure, and temperature in the evolution of the cases. The results reveal that stationarity, i.e., the COVID 19 cases which are independent of pressure, relative humidity, temperature and wind speed, existed only in 148 (23.7%) out of 623 districts. Whereas, strong nonstationarity, i.e., climate dependence, was detected in the cases of 474 (76.08%) districts. 334 (53.6%), 200 (32.1%) and 336 (53.9%) districts out of 623 districts were at high risk (or above) at rural, urban and total population scales respectively. 19 out of 35 states were observed to be under high (or above) Kerala, Maharashtra, Goa and Delhi being the most risked ones. The study provides high-risk maps of COVID 19 pandemic at the district level and is aimed at supporting the decision-makers to identify climatic and socioeconomic factors in augmenting the risks.

Keywords: Climate; COVId 19; India; Nonstationary analysis; Risk; Socioeconomic (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162521001116
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:167:y:2021:i:c:s0040162521001116

DOI: 10.1016/j.techfore.2021.120679

Access Statistics for this article

Technological Forecasting and Social Change is currently edited by Fred Phillips

More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:tefoso:v:167:y:2021:i:c:s0040162521001116