Towards a business analytics capability for the circular economy
Eivind Kristoffersen,
Patrick Mikalef,
Fenna Blomsma and
Jingyue Li
Technological Forecasting and Social Change, 2021, vol. 171, issue C
Abstract:
Digital technologies are growing in importance for accelerating firms’ circular economy transition. However, so far, the focus has primarily been on the technical aspects of implementing these technologies with limited research on the organizational resources and capabilities required for successfully leveraging digital technologies for circular economy. To address this gap, this paper explores the business analytics resources firms should develop and how these should be orchestrated towards a firm-wide capability. The paper proposes a conceptual model highlighting eight business analytics resources that, in combination, build a business analytics capability for the circular economy and how this relates to firms’ circular economy implementation, resource orchestration capability, and competitive performance. The model is based on the results of a thematic analysis of 15 semi-structured expert interviews with key positions in industry. Our approach is informed by and further develops, the theory of the resource-based view and the resource orchestration view. Based on the results, we develop a deeper understanding of the importance of taking a holistic approach to business analytics when leveraging data and analytics towards a more efficient and effective digital-enabled circular economy, the smart circular economy.
Keywords: Digital circular economy; Sustainability; Big data analytics; Competitive advantage; Resource-based view; Expert interviews (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162521003899
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:171:y:2021:i:c:s0040162521003899
DOI: 10.1016/j.techfore.2021.120957
Access Statistics for this article
Technological Forecasting and Social Change is currently edited by Fred Phillips
More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().