EconPapers    
Economics at your fingertips  
 

The Spatial neural network model with disruptive technology for property appraisal in real estate industry

Regina Fang-Ying Lin, Chiye Ou, Kuo-Kun Tseng, Deng Bowen, K.L. Yung and W.H. Ip

Technological Forecasting and Social Change, 2021, vol. 173, issue C

Abstract: Property valuation is a complex issue that has always been the focal point for the real estate industry. The traditional valuation models used for appraisals cannot meet real-world demand anymore due to the improper processing of correlated information of nearby facilities. In this study, we propose a Spatial Neural Network (SNN) model, called Property Appraisal 4.0, that uses disruptive technology to forecast property values and discover hidden neighbourhood features of real estate information in the satellite embedding vectors. The latest deep learning technologies are also employed, such as knowledge distillation, incremental learning, and Deep-Automated Optical Inspection. Class Activation Mapping is also adapted to reinforce the proposed spatial neural network in the model. Experimental results show that our approach's performance is better than that of previous mainstream models, such as the Hedonic Pricing Model and Support Vector Machines.

Keywords: Spatial neural network; Real estate valuation; Spatial information; Class activation mapping; Disruptive technology; Deep-Automated Optical Inspection (AOI) (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162521004996
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:173:y:2021:i:c:s0040162521004996

DOI: 10.1016/j.techfore.2021.121067

Access Statistics for this article

Technological Forecasting and Social Change is currently edited by Fred Phillips

More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:tefoso:v:173:y:2021:i:c:s0040162521004996