Classification of Delphi outputs through robust ranking and fuzzy clustering for Delphi-based scenarios
Simone Di Zio,
Mario Bolzan and
Marco Marozzi
Technological Forecasting and Social Change, 2021, vol. 173, issue C
Abstract:
This paper proposes a method for generating robust ranks of Delphi projections, which are particularly suitable as input for clustering algorithms. The resulting clusters can be used for the construction of Delphi-based scenarios. The method is very flexible and can be applied to the classification of any variable derived from subjective judgments. In the analysis and interpretation of the results of a Delphi, a series of problems emerge related to the use of the concept of distance. The use of robust ranks allows us to overcome these problems.
Keywords: Delphi-based scenario; Expertise; Monte Carlo methods; Robust ranking; Fuzzy clustering (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162521005734
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:173:y:2021:i:c:s0040162521005734
DOI: 10.1016/j.techfore.2021.121140
Access Statistics for this article
Technological Forecasting and Social Change is currently edited by Fred Phillips
More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().