The convergence of big data and accounting: innovative research opportunities
Awad Elsayed Awad Ibrahim,
Ahmed Elamer and
Amr Nazieh Ezat
Technological Forecasting and Social Change, 2021, vol. 173, issue C
Abstract:
This study aims to develop accounting standards, curriculums, and research to cope with the rapid development of big data. The study presents several potential convergence points between big data and different accounting techniques and theories. The study discusses how big data can overcome the data limitations of six accounting issues: financial reporting, performance measurement, audit evidence, risk management, corporate budgeting and activity-based techniques. It presents six exciting research questions for future research. Then, the study explains the potential convergence between big data and agency theory, stakeholders theory, and legitimacy theory. This theoretical study develops new convergence points between big data and accounting by reviewing the literature and proposing new ideas and research questions. The conclusion indicates a significant convergence between big data and accounting on the premise that data is the heart of accounting. Big data and advanced analytics have the potential to overcome the data limitations of accounting techniques that require estimations and predictions. A remarkable convergence is argued between big data and three accounting theories. Overall, the study presents helpful insights to members of the accounting and auditing community on the potential of big data.
Keywords: Big data; Analytics; Accounting; Data science; Business intelligence (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162521006041
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:173:y:2021:i:c:s0040162521006041
DOI: 10.1016/j.techfore.2021.121171
Access Statistics for this article
Technological Forecasting and Social Change is currently edited by Fred Phillips
More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().