Towards ESCO 4.0 – Is the European classification of skills in line with Industry 4.0? A text mining approach
Filippo Chiarello,
Gualtiero Fantoni,
Terence Hogarth,
Vito Giordano,
Liga Baltina and
Irene Spada
Technological Forecasting and Social Change, 2021, vol. 173, issue C
Abstract:
ESCO is a multilingual classification of Skills, Competences, Qualifications, and Occupations created by the European Commission to improve the supply of information on skills demand in the labour market. It is designed to assist individuals, employers, universities and training providers by giving them up to date and standardized information on skills. Rapid technological change means that ESCO needs to be updated in a timely manner. Evidence is presented here of how text-mining techniques can be applied to the analysis of data on emerging skill needs arising from Industry 4.0 to ensure that ESCO provides information which is current. The alignment between ESCO and Industry 4.0 technological trends is analysed. Using text mining techniques, information is extracted on Industry 4.0 technologies from: (i) two versions of ESCO (v1.0 - v1.1.); and (ii) from the 4.0 related scientific literature. These are then compared to identify potential data gaps in ESCO. The findings demonstrate that text mining applied on scientific literature to extract technology trends, can help policy makers to provide more up-to-date labour market intelligence.
Keywords: Industry 4.0; Technological change; Employment; Skill analysis; Text mining (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162521006107
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:173:y:2021:i:c:s0040162521006107
DOI: 10.1016/j.techfore.2021.121177
Access Statistics for this article
Technological Forecasting and Social Change is currently edited by Fred Phillips
More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().