A novel multiscale forecasting model for crude oil price time series
Ranran Li,
Yucai Hu,
Jiani Heng and
Xueli Chen
Technological Forecasting and Social Change, 2021, vol. 173, issue C
Abstract:
Forecasting crude oil prices is an essential research field in the international bulk commodities market. However, price movements present more complex nonlinear behavior due to an increasingly diverse range of risk factors. To achieve better accuracy, this study explores a novel multiscale hybrid paradigm to estimate crude oil prices. The method takes advantage of the variational mode decomposition method to decompose the crude oil price into several simple models, which can be explained using regular factors, irregular factors and trends. Data characteristic analysis is conducted to identify the complexity of different components of the time series. It is important for a multiscale model to select an appropriate model to produce the optimal forecasts. Thus, the final forecasted values are generated by reconstituting all these forecasting items. By investigating the West Texas Intermediate and Brent crude oil prices, this paper presents how data characteristic identification and analysis are conducted in a multiscale paradigm. The empirical analysis proves that the proposed model can achieve superior forecasting results, which indicates the effectiveness of the multiscale model at forecasting complex time series, especially crude oil prices.
Keywords: Crude oil price forecasting; Decomposition-ensemble method; Support vector machine; Multiscale strategy; Complexity analysis (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162521006144
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:173:y:2021:i:c:s0040162521006144
DOI: 10.1016/j.techfore.2021.121181
Access Statistics for this article
Technological Forecasting and Social Change is currently edited by Fred Phillips
More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().