Deep learning for patent landscaping using transformer and graph embedding
Seokkyu Choi,
Hyeonju Lee,
Eunjeong Park and
Sungchul Choi
Technological Forecasting and Social Change, 2022, vol. 175, issue C
Abstract:
Patent landscaping is used to search for related patents during research and development projects. Patent landscaping is a crucial task required during the early stages of an R & D project to avoid the risk of patent infringement and to follow current trends in technology. The first task of patent landscaping is to extract the target patent for analysis from a patent database. Because patent classification for patent landscaping requires advanced human resources and can be tedious, the demand for automated patent classification has gradually increased. However, a shortage of well-defined benchmark datasets and comparable models makes it difficult to find related research studies. This paper proposes an automated patent classification model for patent landscaping based on transformer and graph embedding, both of which are drawn from deep learning. The proposed model uses a transformer architecture to derive text embedding from patent abstracts and uses a graph neural network to derive graph embedding from classification code co-occurrence information and concatenates them. Furthermore, we introduce four benchmark datasets to compare related research studies on patent landscaping. The obtained results showed prominent performance that was actually applicable to our dataset and comparable to the model using BERT, which has recently shown the best performance.
Keywords: Patent landscaping; Deep learning; Transformer; Graph embedding; Patent classification (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162521008441
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:175:y:2022:i:c:s0040162521008441
DOI: 10.1016/j.techfore.2021.121413
Access Statistics for this article
Technological Forecasting and Social Change is currently edited by Fred Phillips
More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().