Online labour market analytics for the green economy: The case of electric vehicles
Maria Papoutsoglou,
Emmanouil S. Rigas,
Georgia M. Kapitsaki,
Lefteris Angelis and
Johannes Wachs
Technological Forecasting and Social Change, 2022, vol. 177, issue C
Abstract:
Since job characteristics in areas related to the green economy and Industry 4.0 are changing rapidly, combined methodologies to measure the labour demand and supply are needed. One substantial aspect of this emerging sector is the shift of the automotive industry towards the production of electric vehicles (EVs). The automotive sector is a major employer in Europe, directly employing over 2.8 million people. However, little is known about the effects this structural transformation of the automotive industry will have on labor markets, in particular in the area of information and communications technology (ICT). This prevents effective planning by educational institutions, who seek to prepare their students for future labor markets, and industry stakeholders aiming to assemble effective teams. In this paper, we develop a framework to analyze labor market trends using digital trace data, and apply it to the case of the EV industry. We track demand-side trends in the labor market using job advertisements from LinkedIn and supply-side trends using data from StackExchange and GitHub. Using natural language processing methods, we categorize the skills sought by EV industry employers on the demand side and topics of interest to individuals on the supply side. We also highlight those programming languages and frameworks most salient in the EV industry.
Keywords: Labour market; Skills; LinkedIn; GitHub; Stack exchange; Electric vehicles (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S004016252200049X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:177:y:2022:i:c:s004016252200049x
DOI: 10.1016/j.techfore.2022.121517
Access Statistics for this article
Technological Forecasting and Social Change is currently edited by Fred Phillips
More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().