EconPapers    
Economics at your fingertips  
 

AI-enabled digital forgery analysis and crucial interactions monitoring in smart communities

Ahmed Seddik, Yassine Maleh, Ghada M. El Banby, Ashraf A.M. Khalaf, Fathi E. Abd El-Samie, Brij B Gupta, Konstantinos Psannis and Ahmed A. Abd El-Latif

Technological Forecasting and Social Change, 2022, vol. 177, issue C

Abstract: Digital forgery has become one of the attractive research fields in today’s technology. There are several types of forgery in digital media transmission, especially digital image transmission. A common type of forgery is copy-move forgery (CMF). The CMF may be encountered in streets, railway stations, underground stations, or festivals. This type of forgery may lead to hugger-mugger in some cases. Therefore, there is a need to find a sufficient countermeasure mechanism to detect image forgeries. This paper presents a new CMFD approach that depends on deep learning for IoT based smart cities. Two well-known deep learning models, namely CNN and ConvLSTM, are adopted for CMFD. The proposed models are tested on MICC-220, MICC-600 and MICC 2000 datasets for validation. Several tests are performed to verify the effectiveness of the proposed models. The simulation results reveal that the testing accuracy reaches 95%, 73%, and 94% for MICC-F220, MICC-F600 and MICC-F2000 datasets. In addition, the proposed approach achieves an accuracy of 85% for a combined set of all datasets.

Keywords: Forgery detection; Deep learning; IoT; Smart cities; Security analysis (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162522000877
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:177:y:2022:i:c:s0040162522000877

DOI: 10.1016/j.techfore.2022.121555

Access Statistics for this article

Technological Forecasting and Social Change is currently edited by Fred Phillips

More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:tefoso:v:177:y:2022:i:c:s0040162522000877