Taming energy and electronic waste generation in bitcoin mining: Insights from Facebook prophet and deep neural network
Rabin K. Jana,
Indranil Ghosh and
Martin W. Wallin
Technological Forecasting and Social Change, 2022, vol. 178, issue C
Abstract:
The Bitcoin mining hosted in the blockchain network consumes enormous amounts of energy and generates electronic waste at an alarming rate. The paper aims to model and predict the future values of these two hazardous variables linked to conventional Bitcoin mining. We develop two predictive models using Facebook's Prophet algorithm and deep neural networks to identify and explain energy consumption and electronic waste generation patterns. The models rely on several explanatory features linked to the blockchain microstructure and the Bitcoin marketplace. We assess the predictive performance of the two models based on daily data of energy consumption and electronic waste generation and eleven key input features. We use local interpretable model-agnostic explanation (LIME) and Shapley additive explanation (SHAP) for explaining how these inputs can predict and control energy consumption and electronic waste generation. The findings assist in accurately estimating the future figures of energy discharge and electronic waste accumulation in the present Bitcoin mining setup. The study also reveals the block size to be the major driver.
Keywords: Bitcoin mining; Electronic waste; Energy consumption; Facebook prophet; Deep Neural network; Explainable artificial intelligence (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162522001160
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:178:y:2022:i:c:s0040162522001160
DOI: 10.1016/j.techfore.2022.121584
Access Statistics for this article
Technological Forecasting and Social Change is currently edited by Fred Phillips
More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().