EconPapers    
Economics at your fingertips  
 

Spatio-temporal variation of Covid-19 health outcomes in India using deep learning based models

Asif Iqbal Middya and Sarbani Roy

Technological Forecasting and Social Change, 2022, vol. 183, issue C

Abstract: Deep learning methods have become the state of the art for spatio-temporal predictive analysis in a wide range of fields, including environmental management, public health, urban planning, pollution monitoring, and so on. Despite the fact that a variety of powerful deep learning-based models can address various problem-specific issues in different research domain, it has been found that no single optimal model can outperform everywhere. Now, in the last two years, various deep learning-based studies have provided a variety of best-performing techniques for predicting COVID-19 health outcomes. In this context, this study attempts to perform a case study that investigates the spatio-temporal variation in the performance of deep-learning-based methods for predicting COVID-19 health outcomes in India. Various widely applied deep learning models namely CNN (convolutional neural network), RNN (recurrent neural network), Vanilla LSTM (long short-term memory), LSTM Autoencoder, and Bidirectional LSTM are considered to investigate their spatio-temporal performance variation. The effectiveness of the models is assessed using various metrics based on COVID-19 mortality time-series from 36 states and union territories of India.

Keywords: Covid-19; Deep learning; Spatio-temporal variation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162522004334
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:183:y:2022:i:c:s0040162522004334

DOI: 10.1016/j.techfore.2022.121911

Access Statistics for this article

Technological Forecasting and Social Change is currently edited by Fred Phillips

More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:tefoso:v:183:y:2022:i:c:s0040162522004334