Understanding the evolution of an emerging technological paradigm and its impact: The case of Digital Twin
Suparna Dhar,
Pratik Tarafdar and
Indranil Bose
Technological Forecasting and Social Change, 2022, vol. 185, issue C
Abstract:
The interest of the academic and practitioner communities on the topic of Digital Twin has grown substantially in recent years. Bibliometric analysis can serve as a useful tool to explore the roadmap of the Digital Twin across various emergent themes over time. In this paper, we compare and analyze 1270 news articles and 4036 research publications to assess the evolution of the Digital Twin paradigm according to these sources from 2016 to 2021. We apply topic modeling and sentiment analysis on the textual corpora. Our analysis shows that certain topics related to applications, simulation, and enabling technologies for Digital Twin find greater coverage and generate higher positivity over time. We ascertain the coevolution and divergence in the number and sentiment of topics through curve matching metrics and determine whether they can rouse consumer interest, captured through online search trends. Our regression analysis shows that news on applications of Digital Twin and research on process evaluation through real-time simulation significantly impact the search frequency of consumers. Our research helps the digital product and service providers to understand the academia-industry gap in their effort to investigate Digital Twin and guides them on steps to take and themes to pursue for generating consumer interest.
Keywords: Bibliometric analysis; Curve matching; Digital Twin; Search trends; Sentiment analysis; Topic modeling (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162522006199
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:185:y:2022:i:c:s0040162522006199
DOI: 10.1016/j.techfore.2022.122098
Access Statistics for this article
Technological Forecasting and Social Change is currently edited by Fred Phillips
More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().